Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.403
Filtrar
Mais filtros











Intervalo de ano de publicação
1.
Front Immunol ; 15: 1339318, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38711496

RESUMO

Allogeneic Hematopoietic Stem Cell Transplantation (allo-HSCT) is the only curative therapy for many hematologic malignancies, whereby the Graft-versus-Leukemia (GVL) effect plays a pivotal role in controlling relapse. However, the success of GVL is hindered by Graft-versus-Host Disease (GVHD), where donor T cells attack healthy tissues in the recipient. The ability of natural regulatory T cells (Treg) to suppress immune responses has been exploited as a therapeutical option against GVHD. Still, it is crucial to evaluate if the ability of Treg to suppress GVHD does not compromise the benefits of GVL. Initial studies in animal models suggest that Treg can attenuate GVHD while preserving GVL, but results vary according to tumor type. Human trials using Treg as GVHD prophylaxis or treatment show promising results, emphasizing the importance of infusion timing and Treg/Tcon ratios. In this review, we discuss strategies that can be used aiming to enhance GVL post-Treg infusion and the proposed mechanisms for the maintenance of the GVL effect upon the adoptive Treg transfer. In order to optimize the therapeutic outcomes of Treg administration in allo-HSCT, future efforts should focus on refining Treg sources for infusion and evaluating their specificity for antigens mediating GVHD while preserving GVL responses.


Assuntos
Doença Enxerto-Hospedeiro , Efeito Enxerto vs Leucemia , Transplante de Células-Tronco Hematopoéticas , Linfócitos T Reguladores , Linfócitos T Reguladores/imunologia , Humanos , Efeito Enxerto vs Leucemia/imunologia , Animais , Doença Enxerto-Hospedeiro/imunologia , Doença Enxerto-Hospedeiro/prevenção & controle , Transplante Homólogo , Transferência Adotiva/métodos , Neoplasias Hematológicas/terapia , Neoplasias Hematológicas/imunologia
2.
Cancer Immunol Immunother ; 73(6): 101, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38630265

RESUMO

BACKGROUND: Adoptive transfer of in vitro expanded tumor-infiltrating lymphocytes (TILs) has been effective in regressing several types of malignant tumors. This study assessed the yield and factors influencing the successful expansion of tumor-infiltrating lymphocytes (TILs) from head and neck squamous cell carcinoma (HNSCC), along with their immune phenotypes. METHODS: TILs were expanded from 47 surgically resected HNSCC specimens and their metastasized lymph nodes. The cancer tissues were cut into small pieces (1-2 mm) and underwent initial expansion for 2 weeks. Tumor location, smoking history, stromal TIL percentage, human papillomavirus infection, and programmed death-ligand 1 score were examined for their impact on successful expansion of TILs. Expanded TILs were evaluated by flow cytometry using fluorescence-activated cell sorting. A second round of TIL expansion following the rapid expansion protocol was performed on a subset of samples with successful TIL expansion. RESULTS: TILs were successfully expanded from 36.2% samples. Failure was due to contamination (27.6%) or insufficient expansion (36.2%). Only the stromal TIL percentage was significantly associated with successful TIL expansion (p = 0.032). The stromal TIL percentage also displayed a correlation with the expanded TILs per fragment (r = 0.341, p = 0.048). On flow cytometry analysis using 13 samples with successful TIL expansion, CD4 + T cell dominancy was seen in 69.2% of cases. Effector memory T cells were the major phenotype of expanded CD4 + and CD8 + T cells in all cases. CONCLUSION: We could expand TILs from approximately one-third of HNSCC samples. TIL expansion could be applicable in HNSCC samples with diverse clinicopathological characteristics.


Assuntos
Neoplasias de Cabeça e Pescoço , Imunoterapia Adotiva , Humanos , Linfócitos do Interstício Tumoral , Carcinoma de Células Escamosas de Cabeça e Pescoço/terapia , Transferência Adotiva , Neoplasias de Cabeça e Pescoço/terapia
3.
World J Gastroenterol ; 30(13): 1791-1800, 2024 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-38659486

RESUMO

Liver transplantation (LT) has become the most efficient treatment for pediatric and adult end-stage liver disease and the survival time after transplantation is becoming longer due to the development of surgical techniques and perioperative management. However, long-term side-effects of immunosuppressants, like infection, metabolic disorders and malignant tumor are gaining more attention. Immune tolerance is the status in which LT recipients no longer need to take any immunosuppressants, but the liver function and intrahepatic histology maintain normal. The approaches to achieve immune tolerance after transplantation include spontaneous, operational and induced tolerance. The first two means require no specific intervention but withdrawing immunosuppressant gradually during follow-up. No clinical factors or biomarkers so far could accurately predict who are suitable for immunosuppressant withdraw after transplantation. With the understanding to the underlying mechanisms of immune tolerance, many strategies have been developed to induce tolerance in LT recipients. Cellular strategy is one of the most promising methods for immune tolerance induction, including chimerism induced by hematopoietic stem cells and adoptive transfer of regulatory immune cells. The safety and efficacy of various cell products have been evaluated by prospective preclinical and clinical trials, while obstacles still exist before translating into clinical practice. Here, we will summarize the latest perspectives and concerns on the clinical application of cellular strategies in LT recipients.


Assuntos
Imunossupressores , Transplante de Fígado , Humanos , Transplante de Fígado/efeitos adversos , Transplante de Fígado/métodos , Imunossupressores/uso terapêutico , Imunossupressores/efeitos adversos , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Transplante de Células-Tronco Hematopoéticas/métodos , Tolerância Imunológica/imunologia , Doença Hepática Terminal/cirurgia , Doença Hepática Terminal/imunologia , Rejeição de Enxerto/imunologia , Rejeição de Enxerto/prevenção & controle , Tolerância ao Transplante/imunologia , Transferência Adotiva/métodos , Sobrevivência de Enxerto/imunologia , Sobrevivência de Enxerto/efeitos dos fármacos , Animais , Resultado do Tratamento , Linfócitos T Reguladores/imunologia , Fígado/imunologia , Fígado/patologia , Fígado/cirurgia
4.
J Pediatric Infect Dis Soc ; 13(Supplement_1): S49-S57, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38417086

RESUMO

Viral infections are a major source of morbidity and mortality in the context of immune deficiency and immunosuppression following allogeneic hematopoietic cell (allo-HCT) and solid organ transplantation (SOT). The pharmacological treatment of viral infections is challenging and often complicated by limited efficacy, the development of resistance, and intolerable side effects. A promising strategy to rapidly restore antiviral immunity is the adoptive transfer of virus-specific T cells (VST). This therapy involves the isolation and ex vivo expansion or direct selection of antigen-specific T cells from healthy seropositive donors, followed by infusion into the patient. This article provides a practical guide to VST therapy by reviewing manufacturing techniques, donor selection, and treatment indications. The safety and efficacy data of VSTs gathered in clinical trials over nearly 30 years is summarized. Current challenges and limitations are discussed, as well as opportunities for further research and development.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Transplante de Órgãos , Sepse , Viroses , Humanos , Linfócitos T , Viroses/terapia , Transferência Adotiva/métodos , Transplante de Células-Tronco Hematopoéticas/efeitos adversos
5.
Hepatol Commun ; 8(3)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38358374

RESUMO

BACKGROUND: Impaired natural killer (NK) cell-mediated antitumor responses contribute to the growth of liver tumors. Expression of a disintegrin and metalloprotease 9 (ADAM9) increases shedding of membrane-bound major histocompatibility complex class I chain-related protein A and results in evasion from NK cell-mediated cytolysis. ADAM9 is also involved in angiogenesis and tumor progression and is a target of miR-126-3p, a tumor suppressor that is downregulated and alters tumor cell behavior in the liver and other cancers. We evaluated the restoration of miR-126-3p and modulation of the miR-126-3p/ADAM9 axis as a therapeutic approach to simultaneously enhance NK cell-mediated cytolysis while targeting both tumor cells and their microenvironment. METHODS: Precursor miRNAs were loaded into milk-derived nanovesicles to generate therapeutic vesicles (therapeutic milk-derived nanovesicles) for the restoration of functional miR-126-3p in recipient cancer cells. RESULTS: Administration of therapeutic milk-derived nanovesicles increased miR-126-3p expression and reduced ADAM9 expression in target cells and was associated with an increase in membrane-bound major histocompatibility complex class I chain-related protein A. This enhanced NK cell cytolysis in adherent tumor cells and in multicellular tumor spheroids while also impairing angiogenesis and modulating macrophage chemotaxis. Moreover, IV administration of therapeutic milk-derived nanovesicles with adoptive transfer of NK cells reduced tumor burden in orthotopic hepatocellular cancer xenografts in mice. CONCLUSION: A directed RNA therapeutic approach can mitigate NK cell immune evasion, reduce angiogenesis, and alter the tumor cell phenotype through the restoration of miR-126-3p in liver tumor cells. The pleiotropic effects elicited by this multi-targeted approach to modulate the local tumor microenvironment support its use for the treatment of liver cancer.


Assuntos
Neoplasias Hepáticas , MicroRNAs , Humanos , Animais , Camundongos , Microambiente Tumoral/genética , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/terapia , MicroRNAs/genética , Transferência Adotiva , Proteínas de Membrana/genética , Proteínas ADAM
6.
Bone Marrow Transplant ; 59(3): 301-305, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38212671

RESUMO

Why a new Perspective in allogeneic hematopoietic transplantation? A summary. Nowadays, for high-risk acute leukemia patients without an HLA-matched donor (sibling or volunteer), hematopoietic transplants that use HLA-haploidentical grafts combined with enhanced post transplant immune suppression (i.e., high-dose cyclophosphamide) are widely used. They are associated with low TRM rates. However, they are also associated with significant chronic GvHD while they only partially abrogate leukemia relapse rates. One may speculate that post-transplant immune suppression, required for GvHD prophylaxis, weakens the anti-leukemic potential of the graft. Historically, haploidentical transplants became feasible for the first time through transplantation of T cell-depleted peripheral blood hematopoietic progenitor cells. Lack of post-transplant immune suppression allowed the emergence of donor-versus-recipient NK-cell alloreactions that eradicated AML. In an attempt to improve these results we recently combined an age-adapted, irradiation-based conditioning regimen with transplant of T-cell-depleted grafts and infusion of regulatory and conventional T cells, without any post transplant immune suppression. With the obvious limitations of a single center experience, this protocol resulted in extremely low relapse and chronic GvHD rates and, consequently, in a remarkable 75% chronic GvHD/relapse-free survival in over 50 AML patients up to the age of 65 many of whom at high risk of relapse.


Assuntos
Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Leucemia Mieloide Aguda , Humanos , Transplante de Células-Tronco Hematopoéticas/métodos , Leucemia Mieloide Aguda/terapia , Leucemia Mieloide Aguda/etiologia , Ciclofosfamida/uso terapêutico , Doença Aguda , Células Matadoras Naturais , Doadores não Relacionados , Transferência Adotiva , Recidiva , Doença Enxerto-Hospedeiro/prevenção & controle , Doença Enxerto-Hospedeiro/etiologia , Condicionamento Pré-Transplante/métodos
7.
J Immunother Cancer ; 12(1)2024 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-38184303

RESUMO

BACKGROUND: Cytomegalovirus (CMV) reactivation after unmanipulated haploidentical stem cell transplantation (SCT) frequently occurs, causing life-threatening morbidities and transplantation failure. Pre-emptive therapy upon the detection of CMV viremia using antiviral agents is currently the standard of care but it was associated with significant toxicity. The CMV antigen-specific cytotoxic T lymphocyte therapy was limited by the time-consuming manufacture process and relatively low success rate. More effective and safer approaches for the treatment of CMV reactivation after haploidentical SCT are in urgent need. METHODS: A single-arm, open-label, phase I clinical trial evaluating the safety and efficacy of CMV-targeting T cell receptor-engineered T (CMV-TCR-T) cell therapy as the first-line pre-emptive therapy for patients with CMV reactivation after haploidentical peripheral blood SCT (PBSCT) was conducted in the Chinese PLA General Hospital. Six patients with CMV reactivation after haploidentical SCT were adoptively transferred by one to three doses of SCT donors-derived CMV-TCR-T cells. This trial was a dose-escalation study with doses ranging from 1×103 CMV-TCR-T cells/kg body weight per dose to 5×105 CMV-TCR-T cells/kg per dose. RESULTS: Except for the grade 1 cytokine release syndrome observed in one patient and mild fever in two patients, no other adverse events were observed. Four patients had response within a month after CMV-TCR-T cell infusion without the administration of any antiviral agents. The other two patients who initially did not respond to CMV-TCR-T cell therapy had salvage ganciclovir and foscarnet administration and then had rapid CMV clearance. The CMV-TCR-T cells displayed overall robust expansion and persistence in the peripheral blood after infusion. The CMV-TCR-T cells were first detected in the peripheral blood of these patients 3-7 days after the first dose of CMV-TCR-T infusion, rapidly expanded and persisted for at least 1-4 months, providing long-term protection against CMV reactivation. In one patient, the CMV-TCR-T cells started to expand even when the anti-graft-versus-host disease reagents were still being used, further indicating the proliferation potential of CMV-TCR-T cells. CONCLUSIONS: Our study first showed CMV-TCR-T cell as a highly feasible, safe and effective first-line pre-emptive treatment for CMV reactivation after haploidentical PBSCT. TRIAL REGISTRATION NUMBER: ClinicalTrials.gov Registry (NCT05140187).


Assuntos
Infecções por Citomegalovirus , Transplante de Células-Tronco Hematopoéticas , Humanos , Transferência Adotiva , Antivirais , Infecções por Citomegalovirus/etiologia , Infecções por Citomegalovirus/terapia , Transplante de Células-Tronco Hematopoéticas/efeitos adversos , Linfócitos T
8.
Cancer Cell ; 42(1): 119-134.e12, 2024 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-38194912

RESUMO

The period between "successful" treatment of localized breast cancer and the onset of distant metastasis can last many years, representing an unexploited window to eradicate disseminated disease and prevent metastases. We find that the source of recurrence-disseminated tumor cells (DTCs) -evade endogenous immunity directed against tumor neoantigens. Although DTCs downregulate major histocompatibility complex I, this does not preclude recognition by conventional T cells. Instead, the scarcity of interactions between two relatively rare populations-DTCs and endogenous antigen-specific T cells-underlies DTC persistence. This scarcity is overcome by any one of three immunotherapies that increase the number of tumor-specific T cells: T cell-based vaccination, or adoptive transfer of T cell receptor or chimeric antigen receptor T cells. Each approach achieves robust DTC elimination, motivating discovery of MHC-restricted and -unrestricted DTC antigens that can be targeted with T cell-based immunotherapies to eliminate the reservoir of metastasis-initiating cells in patients.


Assuntos
Neoplasias da Mama , Linfócitos T , Humanos , Feminino , Evasão da Resposta Imune , Transferência Adotiva , Neoplasias da Mama/terapia , Imunoterapia
9.
Methods Mol Biol ; 2773: 1-7, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38236531

RESUMO

Murine stem cell transplantation is a well-established method for the in vivo study of leukemic pathophysiology. Adoptive transfer of murine leukemic cells into lethally irradiated recipient mice leads to reconstitution of the hematopoietic system with malignant cells and eventually to leukemic progression in the recipient mice. Here, we describe the detailed protocol of the production of retroviral particles carrying the leukemic oncogene of interest as well as the isolation, retroviral transduction, and adoptive transfer of murine bone marrow cells.


Assuntos
Transplante de Células-Tronco Hematopoéticas , Leucemia , Animais , Camundongos , Transplante de Células-Tronco , Leucemia/genética , Leucemia/terapia , Transferência Adotiva , Células da Medula Óssea
10.
Adv Mater ; 36(6): e2305384, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37672674

RESUMO

Adoptive cell therapy has emerged as a promising approach for cancer treatment. However, the transfer of macrophages exhibits limited efficacy against solid tumors due to the dynamic cellular phenotypic shift from antitumor to protumor states within the immunosuppressive tumor microenvironment. In this study, a strategy of attaching bacteria to macrophages (Mø@bac) is reported that endows adoptively infused macrophages with durable stimulation by leveraging the intrinsic immunogenicity of bacteria. These attached bacteria, referred to as backpacks, are encapsulated with adhesive nanocoatings and can sustainably control the cellular phenotypes in vivo. Moreover, Mø@bac can repolarize endogenous tumor-associated macrophages, leading to a more robust immune response and thus reducing the tumor progression in a murine 4T1 cancer model without any side effects. This study utilizing bacteria as cellular backpacks opens a new avenue for the development of cell therapies.


Assuntos
Neoplasias , Camundongos , Animais , Neoplasias/patologia , Macrófagos , Transferência Adotiva , Bactérias , Microambiente Tumoral , Imunoterapia
11.
Cytotherapy ; 26(2): 136-144, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38149947

RESUMO

Type 3 innate lymphoid cells (ILC3) are important in tissue homeostasis. In the gut, ILC3 repair damaged epithelium and suppress inflammation. In allogeneic hematopoietic cell transplantation (HCT), ILC3 protect against graft-versus-host disease (GvHD), most likely by restoring tissue damage and preventing inflammation. We hypothesize that supplementing HCT grafts with interleukin-22 (IL-22)-producing ILC3 may prevent acute GvHD. We therefore explored ex vivo generation of human IL-22-producing ILC3 from hematopoietic stem and progenitor cells (HSPC) obtained from adult, neonatal and fetal sources. We established a stroma-free system culturing human cord blood-derived CD34+ HSPC with successive cytokine mixes for 5 weeks. We analyzed the presence of phenotypically defined ILC, their viability, proliferation and IL-22 production (after stimulation) by flow cytometry and enzyme-linked immunosorbent assay (ELISA). We found that the addition of recombinant human IL-15 and the enhancer of zeste homolog 1/2 inhibitor UNC1999 promoted ILC3 generation. Similar results were demonstrated when UNC1999 was added to CD34+ HSPC derived from healthy adult granulocyte colony-stimulating factor mobilized peripheral blood and bone marrow, but not fetal liver. UNC1999 did not negatively impact IL-22 production in any of the HSPC sources. Finally, we observed that autologous HSPC mobilized from the blood of adults with hematological malignancies also developed into ILC3, albeit with a significantly lower capacity. Together, we developed a stroma-free protocol to generate large quantities of IL-22-producing ILC3 from healthy adult human HSPC that can be applied for adoptive transfer to prevent GvHD after allogeneic HCT.


Assuntos
Benzamidas , Doença Enxerto-Hospedeiro , Transplante de Células-Tronco Hematopoéticas , Indazóis , Piperazinas , Piridonas , Adulto , Recém-Nascido , Humanos , Imunidade Inata , Linfócitos/química , Antígenos CD34/análise , Transplante de Células-Tronco Hematopoéticas/métodos , Fator Estimulador de Colônias de Granulócitos/farmacologia , Doença Enxerto-Hospedeiro/prevenção & controle , Inflamação , Transferência Adotiva
12.
Front Immunol ; 14: 1286638, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38077381

RESUMO

Introduction: Prophylactic strategies to prevent the development of allergies by establishing tolerance remain an unmet medical need. We previously reported that the transfer of autologous hematopoietic stem cells (HSC) expressing the major timothy grass pollen allergen, Phl p 5, on their cell surface induced allergen-specific tolerance in mice. In this study, we investigated the ability of allergen-expressing immune cells (dendritic cells, CD4+ T cells, CD8+ T cells, and CD19+ B cells) to induce allergen-specific tolerance in naive mice and identified CD19+ B cells as promising candidates for allergen-specific cell therapy. Methods: For this purpose, CD19+ B cells were isolated from Phl p 5-transgenic BALB/c mice and transferred to naive BALB/c mice, pre-treated with a short course of rapamycin and an anti-CD40L antibody. Subsequently, the mice were subcutaneously sensitized three times at 4-week intervals to Phl p 5 and Bet v 1 as an unrelated control allergen. Allergen-expressing cells were followed in the blood to monitor molecular chimerism, and sera were analyzed for Phl p 5- and Bet v 1-specific IgE and IgG1 levels by RBL assay and ELISA, respectively. In vivo allergen-induced lung inflammation was measured by whole-body plethysmography, and mast cell degranulation was determined by skin testing. Results: The transfer of purified Phl p 5-expressing CD19+ B cells to naive BALB/c mice induced B cell chimerism for up to three months and prevented the development of Phl p 5-specific IgE and IgG1 antibody responses for a follow-up period of 26 weeks. Since Bet v 1 but not Phl p 5-specific antibodies were detected, the induction of tolerance was specific for Phl p 5. Whole-body plethysmography revealed preserved lung function in CD19+ B cell-treated mice in contrast to sensitized mice, and there was no Phl p 5-induced mast cell degranulation in treated mice. Discussion: Thus, we demonstrated that the transfer of Phl p 5-expressing CD19+ B cells induces allergen-specific tolerance in a mouse model of grass pollen allergy. This approach could be further translated into a prophylactic regimen for the prevention of IgE-mediated allergy in humans.


Assuntos
Alérgenos , Hipersensibilidade , Humanos , Camundongos , Animais , Linfócitos T CD8-Positivos , Imunoglobulina E , Camundongos Transgênicos , Transferência Adotiva , Imunoglobulina G
13.
Front Immunol ; 14: 1235131, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38143765

RESUMO

Efficient intratumoral infiltration of adoptively transferred cells is a significant barrier to effectively treating solid tumors with adoptive cellular transfer (ACT) therapies. Our recent forward genetic, whole-genome screen identified T cell-intrinsic gene candidates that may improve tumor infiltration of T cells. Here, results are combined with five independent genetic screens using rank aggregation to improve rigor. This resulted in a combined total of 1,523 candidate genes - including 1,464 genes not currently being evaluated as therapeutic targets - that may improve tumor infiltration of T cells. Gene set enrichment analysis of a published human dataset shows that these gene candidates are differentially expressed in tumor infiltrating compared to circulating T cells, supporting translational potential. Importantly, adoptive transfer of T cells overexpressing gain-of-function candidates (AAK1ΔN125, SPRR1B, and EHHADH) into tumor-bearing mice resulted in increased T cell infiltration into tumors. These novel gene candidates may be considered as potential therapeutic candidates that can aid adoptive cellular therapy in improving T cell infiltration into solid tumors.


Assuntos
Imunoterapia Adotiva , Neoplasias , Camundongos , Humanos , Animais , Imunoterapia Adotiva/métodos , Neoplasias/genética , Neoplasias/terapia , Neoplasias/patologia , Linfócitos T/patologia , Transferência Adotiva
14.
STAR Protoc ; 4(4): 102624, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37995193

RESUMO

Macrophages are key innate immune cells involved in multiple biological processes, including peripheral nerve regeneration. Here, we describe a protocol for the adoptive cell transfer of bone-marrow-derived macrophages (BMDMs) following sciatic nerve crush injury (SNCI). This procedure involves isolating BMDMs from a donor mouse, potentially manipulating them ex vivo, and reintroducing them into an animal following SNCI. Preclinical studies show that BMDMs can infiltrate injured nerves and impact functional recovery, potentially providing a novel therapy for nerve injuries. For complete details on the use and execution of this protocol, please refer to Jha et al.1.


Assuntos
Traumatismos dos Nervos Periféricos , Animais , Camundongos , Traumatismos dos Nervos Periféricos/terapia , Nervo Isquiático , Macrófagos , Regeneração Nervosa/fisiologia , Transferência Adotiva
15.
PLoS Pathog ; 19(11): e1011643, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37972198

RESUMO

Cytomegaloviruses (CMVs) are host species-specific in their replication. It is a hallmark of all CMVs that productive primary infection is controlled by concerted innate and adaptive immune responses in the immunocompetent host. As a result, the infection usually passes without overt clinical symptoms and develops into latent infection, referred to as "latency". During latency, the virus is maintained in a non-replicative state from which it can reactivate to productive infection under conditions of waning immune surveillance. In contrast, infection of an immunocompromised host causes CMV disease with viral multiple-organ histopathology resulting in organ failure. Primary or reactivated CMV infection of hematopoietic cell transplantation (HCT) recipients in a "window of risk" between therapeutic hemato-ablative leukemia therapy and immune system reconstitution remains a clinical challenge. Studies in the mouse model of experimental HCT and infection with murine CMV (mCMV), followed by clinical trials in HCT patients with human CMV (hCMV) reactivation, have revealed a protective function of virus-specific CD8 T cells upon adoptive cell transfer (AT). Memory CD8 T cells derived from latently infected hosts are a favored source for immunotherapy by AT. Strikingly low numbers of these cells were found to prevent CMV disease, suggesting either an immediate effector function of few transferred cells or a clonal expansion generating high numbers of effector cells. In the murine model, the memory population consists of resting central memory T cells (TCM), as well as of conventional effector-memory T cells (cTEM) and inflationary effector-memory T cells (iTEM). iTEM increase in numbers over time in the latently infected host, a phenomenon known as 'memory inflation' (MI). They thus appeared to be a promising source for use in immunotherapy. However, we show here that iTEM contribute little to the control of infection after AT, which relies almost entirely on superior proliferative potential of TCM.


Assuntos
Infecções por Citomegalovirus , Humanos , Camundongos , Animais , Linfócitos T CD8-Positivos , Citomegalovirus , Imunoterapia , Transferência Adotiva , Antivirais
16.
Life Sci ; 335: 122273, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37972884

RESUMO

AIMS: To investigate the potential of imDCs with high expression of HO-1 in preventing or delaying the onset of Type 1 diabetes mellitus (T1DM) in non-obese diabetic (NOD) mice. MATERIALS AND METHODS: The phenotypic features of DCs in each group were assessed using flow cytometry. Western blot analysis was used to confirm the high expression of HO-1 in imDCs induced with CoPP. Additionally, flow cytometry was used to evaluate the suppressive capacity of CoPP-induced imDCs on splenic lymphocyte proliferation. Finally, the preventive effect of CoPP-induced imDCs was tested in NOD mice. KEY FINDINGS: Compared to imDCs, CoPP-induced imDCs exhibited a reduced mean fluorescence intensity (MFI) of the co-stimulatory molecule CD80 on their surface (P < 0.05) and significantly increased HO-1 protein expression (P < 0.05). Following LPS stimulation, the MFI of co-stimulatory molecules CD80 and CD86 on the surface of CoPP-induced imDCs remained at a lower level (P < 0.05). Furthermore, there was a reduced proliferation rate of lymphocytes stimulated with anti-CD3/28 antibodies. The adoptive transfer of CoPP-imDCs significantly reduced the incidence of T1DM (16.66 % vs. control group: 66.67 %, P = 0.004). Furthermore, at 15 weeks of age, the insulitis score was also decreased in the CoPP-induced imDC treatment group (P < 0.05). There were no significant differences in serum insulin levels among all groups. SIGNIFICANCE: ImDCs induced with CoPP and exhibiting high expression of HO-1 demonstrate a robust ability to inhibit immune responses and effectively reduce the onset of diabetes in NOD mice. This finding suggests that CoPP-induced imDCs could potentially serve as a promising treatment strategy for T1DM.


Assuntos
Diabetes Mellitus Tipo 1 , Animais , Camundongos , Transferência Adotiva , Células Cultivadas , Células Dendríticas , Diabetes Mellitus Tipo 1/prevenção & controle , Diabetes Mellitus Tipo 1/metabolismo , Heme Oxigenase-1/metabolismo , Camundongos Endogâmicos NOD
17.
Lab Anim (NY) ; 52(12): 324-331, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38017180

RESUMO

Adoptive cell transfer between genetically identical hosts relies on the use of a congenic marker to distinguish the donor cells from the host cells. CD45, a glycoprotein expressed by all hematopoietic cells, is one of the main congenic markers used because its two isoforms, CD45.1 and CD45.2, can be discriminated by flow cytometry. As a consequence, C57BL/6J (B6; CD45.2) and B6.SJL-Ptprca Pepcb/BoyJ (B6.SJL; CD45.1) mice are widely used in adoptive cell transfer experiments, under the presumption that they differ only at the CD45 (Ptprc) locus. However, recent studies have identified genetic variations between these congenic strains and have notably highlighted a differential expression of cathepsin E (CTSE). The B6.SJL mouse presents a number of functional differences in hematopoietic stem cell engraftment potential and immune cell numbers compared with the B6 mouse. In this study, we showed that B6 and B6.SJL mice also differ in their CD8+ T cell compartment and CD8+ T cell responses to viral infection. We identified Ctse as the most differentially expressed gene between CD8+ T cells of B6 and B6.SJL and demonstrated that the differences reported between these two mouse strains are not due to CTSE. Finally, using CRISPR-Cas9 genome editing, we generated a CD45.1-expressing B6 mouse by inserting one nucleotide mutation (A904G) leading to an amino acid change (K302E) in the Ptprc gene of the B6 mouse. We showed that this new B6-Ptprcem(K302E)Jmar/J mouse resolves the experimental biases reported between the B6 and B6.SJL mouse lines and should thus represent the new gold standard for adoptive cell transfer experiments in B6.


Assuntos
Linfócitos T CD8-Positivos , Células-Tronco Hematopoéticas , Camundongos , Animais , Camundongos Endogâmicos C57BL , Epitopos , Camundongos Endogâmicos , Transferência Adotiva
18.
Immunohorizons ; 7(11): 755-759, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37938184

RESUMO

CD45.1/CD45.2 congenic markers have been used to track hematopoietic lineage differentiation following hematopoietic stem and progenitor cell (HSPC) transplantation. However, several studies suggest that a bias exists in CD45.1 versus CD45.2 hematopoietic cell reconstitution from HSPCs. Meanwhile, no definitive comparison has been reported for mature immune cells as to whether the CD45.1/CD45.2 disparity can skew the immune cell response. In this study, using lymphocytopenia Rag1-/- CD45.2 mice as hosts, we assessed the reconstitution potential of CD45.1 versus CD45.2 lymphocytes following adoptive transfer of mature T and B cells. We have found a selective bias for CD8+ T cells in that CD45.1 cells showed significantly higher reconstitution compared with CD45.2 cells, whereas CD4+ T cells and CD19+ B cells showed equivalent reconstitution. These results suggest that CD45.1/CD45.2 markers may induce an alloreactive response or a survival bias specific to CD8+ T cells, and they therefore call for caution for using them as congenic markers in immunologic models.


Assuntos
Linfopenia , Animais , Camundongos , Transferência Adotiva , Linfócitos B , Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos
19.
Front Immunol ; 14: 1256453, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37901247

RESUMO

Intrauterine fetal demise (IUFD) - fetal loss after 20 weeks - affects 6 pregnancies per 1,000 live births in the United States, and the majority are of unknown etiology. Maternal systemic regulatory T cell (Treg) deficits have been implicated in fetal loss, but whether mucosal immune cells at the maternal-fetal interface contribute to fetal loss is under-explored. We hypothesized that the immune cell composition and function of the uterine mucosa would contribute to the pathogenesis of IUFD. To investigate local immune mechanisms of IUFD, we used the CBA mouse strain, which naturally has mid-late gestation fetal loss. We performed a Treg adoptive transfer and interrogated both pregnancy outcomes and the impact of systemic maternal Tregs on mucosal immune populations at the maternal-fetal interface. Treg transfer prevented fetal loss and increased an MHC-IIlow population of uterine macrophages. Single-cell RNA-sequencing was utilized to precisely evaluate the impact of systemic Tregs on uterine myeloid populations. A population of C1q+, Trem2+, MHC-IIlow uterine macrophages were increased in Treg-recipient mice. The transcriptional signature of this novel uterine macrophage subtype is enriched in multiple studies of human healthy decidual macrophages, suggesting a conserved role for these macrophages in preventing fetal loss.


Assuntos
Natimorto , Linfócitos T Reguladores , Feminino , Gravidez , Humanos , Animais , Camundongos , Camundongos Endogâmicos CBA , Macrófagos , Transferência Adotiva , Glicoproteínas de Membrana , Receptores Imunológicos
20.
Front Immunol ; 14: 1212476, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37691932

RESUMO

Immunotherapy has ushered in a new era in cancer treatment, and cancer immunotherapy continues to be rejuvenated. The clinical goal of cancer immunotherapy is to prime host immune system to provide passive or active immunity against malignant tumors. Tumor infiltrating leukocytes (TILs) play an immunomodulatory role in tumor microenvironment (TME) which is closely related to immune escape of tumor cells, thus influence tumor progress. Several cancer immunotherapies, include immune checkpoint inhibitors (ICIs), cancer vaccine, adoptive cell transfer (ACT), have shown great efficacy and promise. In this review, we will summarize the recent research advances in tumor immunotherapy, including the molecular mechanisms and clinical effects as well as limitations of immunotherapy.


Assuntos
Imunoterapia , Neoplasias , Imunomodulação , Imunidade Ativa , Imunoterapia Adotiva , Transferência Adotiva , Neoplasias/terapia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA